Basement membrane macromolecules: insights from atomic force microscopy.

نویسندگان

  • C H Chen
  • H G Hansma
چکیده

The major macromolecules of basement membranes-collagen IV, laminin-1, and heparan sulfate proteoglycan (HSPG)-have been analyzed by atomic force microscopy (AFM), both individually and in combination with each other. The positions of laminin binding to collagen IV were mapped and compared with the positions of imperfections in the amino acid sequence of collagen IV; the apparent molecular volumes of the HSPG proteoglycans were measured and used to estimate the corresponding molecular weights. Even the thin, thread-like strands of the polyanion heparan sulfate can be visualized with AFM without staining, coating, or fixation. These strands are single polysaccharide chains and are thus thinner than single-stranded DNA. The heparan sulfate strands in HSPG are necessary for protein filtration in kidney basement membranes. We propose that these thin strands filter proteins by functioning as an entropic brush-i.e., that they filter proteins by their constant thermally driven motion in the basement membrane. These AFM analyses in air are a step toward AFM analyses under fluid of basement membrane macromolecules interacting with each other.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural biology with carbon nanotube AFM probes.

Carbon nanotubes represent ideal probes for high-resolution structural and chemical imaging of biomolecules with atomic force microscopy. Recent advances in fabrication of carbon nanotube probes with sub-nanometer radii promise to yield unique insights into the structure, dynamics and function of biological macromolecules and complexes.

متن کامل

The Acinar Cage: Basement Membranes Determine Molecule Exchange and Mechanical Stability of Human Breast Cell Acini.

The biophysical properties of the basement membrane that surrounds human breast glands are poorly understood, but are thought to be decisive for normal organ function and malignancy. Here, we characterize the breast gland basement membrane with a focus on molecule permeation and mechanical stability, both crucial for organ function. We used well-established and nature-mimicking MCF10A acini as ...

متن کامل

Nanoscale shear deformation mechanisms of opposing cartilage aggrecan macromolecules.

The nanoscale shear deformation behavior of two opposing end-grafted aggrecan layers was studied in aqueous solutions using atomic force microscopy, and was observed to depend markedly on bath ionic strength, the presence of calcium ions, and the applied lateral displacement rate. These results provide molecular-level insights into the contribution of aggrecan deformation mechanisms to cartilag...

متن کامل

Measurement of Structural and Mechanical Property of Live Mesangial Cell (MC) by Atomic Force Microscopy (AFM)

Atomic force microscopy (AFM) has become an important device to visualize various cells and biological materials for non-invasive imaging. The major advantage of AFM compared to the conventional optical and electron microscopes is its convenience. Sample preparation for AFM does not need special coating or vacuum as a procedure. AFM can detect samples even under the aqueous condition. In this e...

متن کامل

Ligand-receptor Interactions

The formation and dissociation of specific noncovalent interactions between a variety of macromolecules play a crucial role in the function of biological systems. During the last few years, three main lines of research led to a dramatic improvement of our understanding of these important phenomena. First, combination of genetic engineering and X ray cristallography made available a simultaneous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of structural biology

دوره 131 1  شماره 

صفحات  -

تاریخ انتشار 2000